HETERODIENOPHILES 9.¹ ON THE PREFERENCE FOR EXO-ORIENTATION IN ALDIMINE CYCLOADDITIONS Grant R. Krow*, Constance Johnson, and Mary Boyle Department of Chemistry, Temple University, Phila., Pa. 19122

(Received in USA 13 March 1978; received in UK for publication 11 April 1978) The synthetic utility of the Diels-Alder route to cyclic structures is enhanced by its

remarkable stereoselectivity.² Notable among the several stereochemical aspects of this reaction are the "principle of <u>cis</u> addition" and the "Alder <u>endo</u>-rule." These are the general stereochemical rules governing kinetically controlled cycloadditions of 1,2-disubstituted olefins with'dienes. While the "cis addition principle" can be related to the concertedness of Diels-Alder reactions, the basis for the "Alder endo-rule" is believed to be a combination of steric and polar effects combined with secondary orbital interactions.²

In order to enhance the utility of the Diels-Alder reaction as a route to stereoselectively substituted heterocycles, 3 we have been studying the limits of the Alder <u>endo</u>-rule as it applies . to the cycloaddition of aldimines with cyclic dienes.' We here wish to report the first examples of substituent stereochemical preferences during the catalyzed cycloaddition of a diene with aldimines identically substituted on nitrogen and carbon.

If one considers cycloaddition of cyclohexa-1,3-diene with an $E-1$,2-disubstituted olefin $\frac{1}{k}$, the <u>cis</u> addition principle predicts the <u>trans</u> product ξ . Either carbalkoxyl group can be <u>endo</u> in 2 by virtue of the symmetry axis of olefin $\frac{1}{4}$. For cycloaddition of an E-aldimine 2 , R = R', the nitrogen atom destroys axial symmetry so either a C-3 exo-R $\frac{A}{A}$ or endo-R $\frac{5}{A}$ structure can form. If protonated E-imines 2 react with dienes via a transition state identical to an isoelectronic and sterically similar E-olefin, a nearly 50:50 exo/endo ratio of $\frac{1}{\lambda}$ and $\frac{1}{\lambda}$ can be predicted.

Aldimines 2 were generated by the action of boron trifluoride-ether in chloroform for 2-6 hr on N-carbalkoxy-2-methoxy glycinates β , 4 which were used in situ with cyclohexa-1,3-diene. Workup and molecular distillation (100-125[°], 0.4mm) afforded in 25-35% yields mixtures of the C-3 exo and endo substituted adducts $\frac{1}{6}$ and $\frac{5}{6}$ (Table 1), purified by GLPC (5% SE-52 on Chromsorb G, 185⁰). The ratio of isomers $\frac{1}{n}$ could be determined by proton NMR at ambient temperature by inspection of the olefinic region. The shift for proton H_5 of the C-3 endo-substituted isomer ζ at 66.15 is upfield of the shifts for olefinic protons H_5 and H_6 of $\frac{1}{6}$ and H_6 of $\frac{1}{6}$ centered at 66.46 . Isomer ratios as determined by NMR integration 6 are shown in Table 1.

Table 1. Kinetic^a exo-Preferences in 3-Substituted N-Carboalkoxy-2-Azabicyclo[2.2.2]oct-5-enes

4 and 5 Formed Via Acid Catalyzed Addition of Aldimines 2 with Cyclohexa-1,3-diene.

(a) After four hrs in refluxing chloroform with 2-5% BF₃-etherate, 94/6 and 75/25 mixtures of $\frac{4}{2}$ (Entry I) were unchanged. Longer reaction times or higher percentages of acid resulted in eventual decomposition of both <u>exo</u> and <u>endo</u> adducts; (b) Satisfactory analyses were obtained for all new compounds; (c) NMR (CDC1₃) shifts were identical within \pm 0.05 δ units. $\delta H_1 = 4.76$; $\delta H_{3x} = 4.2$; δH_{3n} = 3.83; δH_{4x} = 3.06; δH_{4n} = 2.92; (d) ref. 3b; (e) ref. 5; (f) In reactions of E-olefins with cyclopentadiene phenyl prefers endo over carbomethoxy 56/44 and p-nitrophenyl prefers endo over carbomethoxy 72/28, Table VIII in ref. 2; (g) ref. 7; (h) BF_3 catalysis; (i) thermal.

No. 23 1973

In Table 1 aldimines λ in which there are identical substituents on imine carbon and nitrogen (Entries I-II) indicate a kinetic preference for introduction of the substituent on carbon into the C-3 <u>exo</u> position. Modification of the alkoxy substituent on the ester or urethane (Entries III-V) has little effect on the stereochemical preference. These results are consistent with the reported preference⁵ of aryl and acetyl for the C-3 $\frac{exo}{exo}$ orientation in reactions of aldimines 2 generated from alkylidenediurethanes (Entries VI-VIII). Only with the bulky trichloromethyl group (Entry IX) is a C-3 endo preference shown; however, this example is not for an N-protonated aldimine λ , but for a thermal or boron trifluoride catalyzed reaction of the isolated aldimine.⁷

Assuming application of the Alder endo-rule to the reactions in Table 1, the enhanced preference for the substituent on aldimine carbon to occupy an exo orientation in the adduct $\frac{1}{6}$ implies an enhanced preference in protonated E-aldimines $\lambda^{1.7-9}$ for the substituent on nitrogen to cycloadd via an endo orientation. One plausible explanation is that the inductive effect of the charged nitrogen atom in 2 makes the carbalkoxyl group adjacent to nitrogen more electron deficient than the carbalkoxyl group next to carbon. ⁸ Secondary orbital interactions between the diene and the aldimine substituent might favor interaction with the most electron poor carbalkoxyl group on nitrogen, thus leading preferentially with an <u>E</u>-aldimine to C-3 <u>exo</u>-carbalkoxy adducts $\frac{\delta}{\epsilon}$. Thi explanation is consistent with the strong endo prederence shown by acid coordinated substituents in the acid catalyzed Diels-Alder cycloaddition of olefins to dienes.^{10a-d}

Alternatively, the counter-ion associated with the iminium ion 2 may increase the effective steric bulk about the nitrogen substituent. For steric reasons the substituent on nitrogen would prefer the less hindered endo orientation. This would lead with an E-aldimine 2 to preferential C-3 $\frac{\text{exo}}{\text{exo}}$ -carbalkoxy adduct $\frac{h}{\mu}$. The invariance with leaving group of the C-3 $\frac{\text{exo}}{\text{exo}}$ substituent preference for Entry V, Table 1, $^{3\text{b}}$ when the aldimine $\frac{3}{6}$ is generated from $\acute{\text{p}}$ or $\frac{7}{6}$ appears to be inconsistent with this latter theory. 11

$$
\begin{array}{ccc}\n\text{PhCH}_2\text{OOCNHCHCOOCH}_3 & \text{L} & \text{X = OCH}_3 \\
\downarrow & & \text{X} & \text{N = NHCOOCH}_2\text{Ph}\n\end{array}
$$

Acknowledgment: Support of the National Science Foundation CHE-05757 and technical assistance of D. Shaw, F. Shapiro, and M. Frye are gratefully acknowledged.

REFERENCES

- 1. For previous papers, see: G. R. Krow, K. M. Damodaran, D. **M.** Fan, R. Rodebaugh, A. Gaspari, and U. Nadir, <u>J</u>. Org. Chem., $\frac{1}{2}$, 2486 (1977), and footnote 1 therein.
- 2. J. Martin and R. K. Hill, Chem. Rev., \mathfrak{h} , 537 (1961).
- 3. See, for example; (a) K. Jankowski, Tetrahedron Lett., 1976, 3309; (b) A. J. G. Baxter and A. B. Holmes, J. Chem. Soc. Perkins I, 1977, 2343.
- 4. E. Zoller and D. Ben-Ishai, Tetrahedron, λ , 863 (1975). Amberlite IR-120(H^+) ion exchange resin was used in place of sulfuric acid. Yields of glycinate esters were 90-95X.
- 5. The upfield shift of H₅ in C-3 endo-aryl and endo-acetyl adducts $\frac{5}{6}$ has been noted previously; G. Krow, R. Rodebaugh, R. Carmosin, W. Figures, H. Pannella, G. DeVicaris, and M. Grippi, J. Amer. Chem. Soc., 25, 5273 (1973).
- 6. Twice the integrated area of H₅ of the endo isomer $\frac{5}{6}$ at 86.15 was divided by the total olefinic area to obtain the fraction of ζ present in the mixture. Proton assignments were confirmed by decoupling.
- 7. G. Krow, C. Pyun, R. Rodebaugh, and J. Marakowski, <u>Tetrahedron, 30,</u> 2977 (1974).
- a. G. Krow, C. Pyun, C. Leitz, J. Marakowski, and K. Ramey, $\underline{\mathbf{J}}$. Org. Chem., 32 , 2449 (1974).
- 9. Cyclic Z-aldimines afford kinetic products with the substituent on aldimine carbon endo; D. Kim and S. M. Weinreb, $\underline{\mathbf{J}}$. Org. Chem., $\overset{4}{\mathcal{M}}$, 121 (1978), and reference 7.
- 10. (a) M. Kakushima, J. Espinosa, Z. Valenta, <u>Can</u>. <u>J</u>. <u>Chem</u>., 54, 3304 (1976); (b) Y. N. Mukerjee, P. C. Jain and N. Anand, <u>Indian</u> <u>J</u>. <u>Chem</u>., 12, 331 (1974); (c) T. Inukai and T. Kojima, <u>J. Org</u> Chem., 32, 869 (1967); 31, 2032 (1966); (d) J. Sauer and J. Kredel, Tetrahedron Lett., 1966, 731; (e) K. N. Houk and R. W. Strozier, J. Amer. Chem. Soc., 95, 4094 (1973); (f) B. M. Trost, J. Ippen, and W. C. Vladuchick, ibid., 22, 8116 (1977).
- 11. Use of benzene solvent in place of chloroform has little effect on stereochemical preference for Entries I-VII, Table 1. See references 3b, 5.