HETERODIENOPHILES 9.¹ ON THE PREFERENCE FOR <u>EXO</u>-ORIENTATION IN ALDIMINE CYCLOADDITIONS Grant R. Krow*, Constance Johnson, and Mary Boyle Department of Chemistry, Temple University, Phila., Pa. 19122

(Received in USA 13 March 1978; received in UK for publication 11 April 1978) The synthetic utility of the Diels-Alder route to cyclic structures is enhanced by its

remarkable stereoselectivity.² Notable among the several stereochemical aspects of this reaction are the "principle of <u>cis</u> addition" and the "Alder <u>endo</u>-rule." These are the general stereochemical rules governing kinetically controlled cycloadditions of 1,2-disubstituted olefins with dienes. While the "<u>cis</u> addition principle" can be related to the concertedness of Diels-Alder reactions, the basis for the "Alder <u>endo</u>-rule" is believed to be a combination of steric and polar effects combined with secondary orbital interactions.²

In order to enhance the utility of the Diels-Alder reaction as a route to stereoselectively substituted heterocycles,³ we have been studying the limits of the Alder <u>endo</u>-rule as it applies to the cycloaddition of aldimines with cyclic dienes.¹ We here wish to report the first examples of substituent stereochemical preferences during the catalyzed cycloaddition of a diene with aldimines identically substituted on nitrogen and carbon.

If one considers cycloaddition of cyclohexa-1,3-diene with an <u>E</u>-1,2-disubstituted olefin $\frac{1}{4}$, the <u>cis</u> addition principle predicts the <u>trans</u> product 2. Either carbalkoxyl group can be <u>endo</u> in 2 by virtue of the symmetry axis of olefin $\frac{1}{4}$. For cycloaddition of an <u>E</u>-aldimine 3, R = R', the nitrogen atom destroys axial symmetry so either a C-3 <u>exo</u>-R 4 or <u>endo</u>-R 5 structure can form. If protonated E-imines 3 react with dienes via a transition state identical to an isoelectronic and sterically similar <u>E</u>-olefin, a nearly 50:50 <u>exo/endo</u> ratio of 4 and 5 can be predicted.

Aldimines 3 were generated by the action of boron trifluoride-ether in chloroform for 2-6 hr

on N-carbalkoxy-2-methoxy glycinates ξ ,⁴ which were used in situ with cyclohexa-1,3-diene. Workup and molecular distillation (100-125°, 0.4mm) afforded in 25-35% yields mixtures of the C-3 <u>exo</u> and <u>endo</u> substituted adducts χ and ξ (Table 1), purified by GLPC (5% SE-52 on Chromsorb G, 185°). The ratio of isomers χ/ξ could be determined by proton NMR at ambient temperature by inspection of the olefinic region. The shift for proton H₅ of the C-3 <u>endo</u>-substituted isomer ξ at $\delta 6.15$ is upfield of the shifts for olefinic protons H₅ and H₆ of χ and H₆ of ξ centered at $\delta 6.46$.⁵ Isomer ratios as determined by NMR integration⁶ are shown in Table 1.

Table 1. Kinetic^a exo-Preferences in 3-Substituted N-Carboalkoxy-2-Azabicyclo[2.2.2]oct-5-enes

4 and 5 Formed Via Acid Catalyzed Addition of Aldimines 3 with Cyclohexa-1,3-diene.

Adduct ^{b,c}		Percentage 4		
	R'	R	(C-3 <u>exo</u> -R)	
I	COOMe	COOMe	73 <u>+</u> 4	
II	COOEt	COOEt	70 <u>+</u> 4	
III	COOMe	COOEt	70 <u>+</u> 4	
IV	COOEt	COOMe	65 <u>+</u> 4	
v^d	COOCH ₂ Ph	COOMe	80	
VI ^e	COOEt	COMe	67 <u>+</u> 2	
VII ^e	COOEt	${\tt Ph}^{\tt f}$	80 <u>+</u> 2	
vIII ^e	COOEt	p-NO ₂ Ph ^f	80 <u>+</u> 2	
IX ^g	COOEt	CC1,	25 ± 3^{h}	
		5	38 ± 3^{1}	

(a) After four hrs in refluxing chloroform with 2-5% BF_3 -etherate, 94/6 and 75/25 mixtures of 4/5 (Entry I) were unchanged. Longer reaction times or higher percentages of acid resulted in eventual decomposition of both <u>exo</u> and <u>endo</u> adducts; (b) Satisfactory analyses were obtained for all new compounds; (c) NMR (CDCl₃) shifts were identical within \pm 0.05 dunits. $\delta H_1 = 4.76$; $\delta H_{3x} = 4.2$; $\delta H_{3n} = 3.83$; $\delta H_{4x} = 3.06$; $\delta H_{4n} = 2.92$; (d) ref. 3b; (e) ref. 5; (f) In reactions of <u>E</u>-olefins with cyclopentadiene phenyl prefers <u>endo</u> over carbomethoxy 56/44 and p-nitrophenyl prefers <u>endo</u> over carbomethoxy 72/28, Table VIII in ref. 2; (g) ref. 7; (h) BF_3 catalysis; (i) thermal.

No. 23

In Table 1 aldimines $\frac{3}{4}$ in which there are identical substituents on imine carbon and nitrogen (Entries I-II) indicate a kinetic preference for introduction of the substituent on carbon into the C-3 <u>exo</u> position. Modification of the alkoxy substituent on the ester or urethane (Entries III-V) has little effect on the stereochemical preference. These results are consistent with the reported preference⁵ of aryl and acetyl for the C-3 <u>exo</u> orientation in reactions of aldimines $\frac{3}{4}$ generated from alkylidenediurethanes (Entries VI-VIII). Only with the bulky trichloromethyl group (Entry IX) is a C-3 <u>endo</u> preference shown; however, this example is not for an N-protonated aldimine $\frac{3}{4}$, but for a thermal or boron trifluoride catalyzed reaction of the **isolated** aldimine.⁷

Assuming application of the Alder <u>endo</u>-rule to the reactions in Table 1, the enhanced preference for the substituent on aldimine carbon to occupy an <u>exo</u> orientation in the adduct 4 implies an enhanced preference in protonated <u>E</u>-aldimines $\chi^{1,7-9}$ for the substituent on nitrogen to cycloadd via an <u>endo</u> orientation. One plausible explanation is that the inductive effect of the charged nitrogen atom in 3 makes the carbalkoxyl group adjacent to nitrogen more electron deficient than the carbalkoxyl group next to carbon.⁸ Secondary orbital interactions between the diene and the aldimine substituent might favor interaction with the most electron poor carbalkoxyl group on nitrogen, thus leading preferentially with an <u>E</u>-aldimine to C-3 <u>exo</u>-carbalkoxy adducts 4. This explanation is consistent with the strong <u>endo</u> prederence shown by acid coordinated substituents in the acid catalyzed Diels-Alder cycloaddition of olefins to dienes.^{10a-d}

Alternatively, the counter-ion associated with the iminium ion 2 may increase the effective steric bulk about the nitrogen substituent. For steric reasons the substituent on nitrogen would prefer the less hindered <u>endo</u> orientation. This would lead with an <u>E</u>-aldimine 2 to preferential C-3 <u>exo</u>-carbalkoxy adduct 4. The invariance with leaving group of the C-3 <u>exo</u> substituent preference for Entry V, Table 1, ^{3b} when the aldimine 2 is generated from 6 or 7 appears to be inconsistent with this latter theory.¹¹

Acknowledgment: Support of the National Science Foundation CHE-05757 and technical assistance of D. Shaw, F. Shapiro, and M. Frye are gratefully acknowledged.

REFERENCES

- For previous papers, see: G. R. Krow, K. M. Damodaran, D. M. Fan, R. Rodebaugh, A. Gaspari, and U. Nadir, <u>J. Org. Chem.</u>, <u>42</u>, 2486 (1977), and footnote 1 therein.
- 2. J. Martin and R. K. Hill, <u>Chem. Rev.</u>, 61, 537 (1961).
- See, for example; (a) K. Jankowski, <u>Tetrahedron Lett</u>., 1976, 3309; (b) A. J. G. Baxter and A. B. Holmes, <u>J. Chem. Soc. Perkins</u> <u>I</u>, 1977, 2343.
- 4. E. Zoller and D. Ben-Ishai, <u>Tetrahedron</u>, 31, 863 (1975). Amberlite IR-120(H⁺) ion exchange resin was used in place of sulfuric acid. Yields of glycinate esters were 90-95%.
- The upfield shift of H₅ in C-3 <u>endo-aryl</u> and <u>endo-acetyl</u> adducts 5 has been noted previously;
 G. Krow, R. Rodebaugh, R. Carmosif, W. Figures, H. Pannella, G. DeVicaris, and M. Grippi, <u>J</u>.
 <u>Amer. Chem. Soc.</u>, 95, 5273 (1973).
- 6. Twice the integrated area of H_5 of the <u>endo</u> isomer ξ at 66.15 was divided by the total olefinic area to obtain the fraction of ξ present in the mixture. Proton assignments were confirmed by decoupling.
- 7. G. Krow, C. Pyun, R. Rodebaugh, and J. Marakowski, <u>Tetrahedron</u>, <u>30</u>, 2977 (1974).
- 8. G. Krow, C. Pyun, C. Leitz, J. Marakowski, and K. Ramey, <u>J</u>. <u>Org</u>. <u>Chem</u>., <u>39</u>, 2449 (1974).
- Cyclic <u>Z</u>-aldimines afford kinetic products with the substituent on aldimine carbon <u>endo</u>; D.
 Kim and S. M. Weinreb, <u>J. Org. Chem.</u>, 43, 121 (1978), and reference 7.
- 10. (a) M. Kakushima, J. Espinosa, Z. Valenta, <u>Can. J. Chem., 54</u>, 3304 (1976); (b) Y. N. Mukerjee, P. C. Jain and N. Anand, <u>Indian J. Chem., 12</u>, 331 (1974); (c) T. Inukai and T. Kojima, <u>J. Org. Chem., 32</u>, 869 (1967); 31, 2032 (1966); (d) J. Sauer and J. Kredel, <u>Tetrahedron Lett.</u>, 1966, 731; (e) K. N. Houk and R. W. Strozier, <u>J. Amer. Chem. Soc</u>., 25, 4094 (1973); (f) B. M. Trost, J. Ippen, and W. C. Vladuchick, <u>1bid.</u>, 29, 8116 (1977).
- 11. Use of benzene solvent in place of chloroform has little effect on stereochemical preference for Entries I-VII, Table 1. See references 3b, 5.